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Four necessary conditions for steady irrotational compressible flow -.
.

through a straight cascade of blades are derived from the irrotationality
condition and the conservation of mass and momentum. Expressions are

. obtained which measure the degree to which an approximate compressible-
flow solution departs from these conditions. The expressions may be
used as a measure not only of how well a given flow solution approxi-
mates the flow of the usual polytropic gas, but also OY how well it
approximates the flow of an arbitrary barotropic fluid. .-

As illustrations of’the use of the error expressions, they are
applied to three basically different types of approximation to the flow
of a pol.ytropicgas through a cascade of typical compressor blading;
nemely, (1) the incompressible approximation, (2) the Prandtl-Glauert
approximation, and (3) an approximation based on a linear relation
between pressure and specific volume. The approximation based on the
linear pressue-volume relation gave much the best agreement by satis-
fying,the irrotationalityand continuity conditions exactly and the
momentum conditions within about 1 percent. Although it iS shown that
in the Frandtl-Glauert approximation,the four necesswy conditions for
the compressible flow ~e satisfiedto the extent that terms higher than
the first order ih the perturbation velocity are negligible, the errors
resulting from this linear approximation were so large for a typicaJ
compressor cascade that this approximation was no better than the incom-
pressible approximation (maximum error expression, 19 percent). When
both parallel and normal components of the perturbation velocity were
considered in computing the
appreciably better accuracy
obtained.

resultant compressible velocity, however,
(maximum error expression, 7 percent) was
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INTRODUCTION
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The compressible flow along the blade surface must be accurately
determined in designing blade rows for high loading and high subsonic
Mach numbers in order to avoid excessive local velocities and to prevent
flow separation. Because the solution for the two-dimensional potential
flow of a compressibleperfect fluid through a cascade of blades cannot
be obtained analytically, some approximate method must be used. The
methods of approximation consist in replacing the original partial dif-
ferential equation by either a simpler partial differential equation or
a difference eqyation and solving. The solution of the simpler equation
may involve additional approximations, such as modified boundary condi-
tions.

Some methods of approximation give the flow throughout the field
and others permit the determination of the flow on the blade surface
directly. For all methods, however, it is desirable to obtain high
accuracy on the blade surface where the conditions are the most critical
because-there the velocity reaches its maximum value and its distribu-
tion along the blade”surface determines the boundary-layer behavior. In
general, the errors involved in the approximate methods are of two
types: (1) errors arising from approximat~ the exact--differential
equation; and (2) errors’arising in the solution of the simplified equa-
tion. Because the approximate solutions do not usually give in them-
selves a convenient means of checking the over-aU accura~y obtained, an
investigationwas conducted at the NACA Lewis laboratory to obtain cri-
terions for measuring and comparing the accuracy or consistency of the
various approximate compressible-fluw solutions. In a manner similar to
that usedby Weinig in reference 1 to obtain checks for the numerical
accuracy of incompressible-flowsolutions, four integral relations based
on the necessary conditions of irrotationalityand conservation of mss
and momentum were obtained. Error expressions which give the deviation
of an approximate compressible-flowsolutia from these necessary con-
ditions are presented for measuring the accuracy of compressible-flow
solutions. Because the expressions are given in a general form which
permits using an arbitrary relation between pressure and density, they
may be used to estimate how closely a given solution approximates the
flow of a~ arbitrary barotropic fluid.

As an illustration of the application, the integral expressims are
used to evaluate the relative accuracy of three different methods of
approximating the usual compressible flow of a polytropic gas (a perfect
gas with constant specific heat) through a cascade of blades. The three
methods of approx~tion compared are: [1) the incompressible-potential
flow approximation, (2) the Prandtl-Glauertapproximation as adapted to
cascades by Woolard (reference 2), and (3) an approximation based on the
linear pressure-volume relation as applied to cascades in reference 3.

.
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The relations for conservation of mass and momentum for steady two-
dhensional compressible flow my be written

$@pY+Pvyd4 =0 (1)
c

.

.

$[Pdx+Pvy(-vx aY+vydx)] =0

c

and

$pdY+Pvx(-vx dY+vydd] =0

c

(2)

(3)

where the contour integrals are evaluated around any circuit (J enclos-
ing only fluid, that is, not enclosing any blades. [All synibolsare
defined in appendix A.) The irrotationality condition, which requires
the circulation around the path C to be zero, maybe written in the
form

$(Vxd%+vydy). o
c’

(4)

Equtions (1) to (4) would, of course, be true for either direction of
integration along C, but this directicm was taken as clockwise for the
sake of definiteness.

If the contour integrals through a cascade of blades are evaluated
along the contour C indicatedby arrows along abcdefgha in figure 1,
the portions of the integrals on the free sections of one stagnation
streamline ha and bc cancel the portions on the free sections of the
other ‘stagnationstreamline fg and de because the integrands are
eqml at corresponding points and the inte~ations are in opposite
directions. The only remai?+g portions of the contour integrals are
those along ab and ef, which give the integrals around the blade,
and those along cd ,ad @j which can be readily evaluated in terms
of the uniform upstream and downstream conditions. The contour integrals
in equations (1) to (4) thus become
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b

$( -pvx d, + pvy ‘X) =
c

-jdpvxw-fpvx@=(pvx)ls =(pvx,2s -

(5)

$[ 1
p‘x + Pvy(-vx ‘Y + Vy ‘x)

c

.~pti+[p’q’pvyvx

= $p ‘x t’ (pvyvx)ls - (pvyvx)zs
B“

J[ 1
-P ‘Y + Pvx(-vx ‘Y + Vy ~)

c

= -..,’, .~pd,-& -~’p:
=- $Pkf+Pls - P2S + (PVX2)1S- (PVX2)2S

B

4 (Vxdx+vydy)=

Jc J!’v?lrvs’
(’l

d
N
ml

f

h

‘Y- pvyvx d,

g .

.

(6)

—

(7)
—

‘JF’Y’JFY”
.

= 9V8 ds - vl,~ + v2,yf3 (8)

B
●
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,- where B indicates the integration path around the blade contour
(counterclockwise)and V~ is taken as the component of the velocity in

the direction of integration or increasing s.
.

For any potential flow in which the density is a lumwn function of
the pressure, the density snd the pressure canbe e~ressed as a func-
tion of the velocityby mesas of BernrniUils equation

.-

(9)

Consequently, if the approximate compressible-flow solution is given in
terms of the velocity distribution, all the sepsrate pcrrtionsof the

* contour integrals can be evaluated and the magnitude of the deviaticm
from the necessary conditions (1) to (4) determined. These deviations
are expressed as follows: the percentage error in mass flow

x 100 (lo)

the error in blade force components as percent of the resultemt force

b

.

$[pdx- 1(PVYKJ2 - (Pvyvx)l s

&. =
B

4/[ 1[(PVYVX)2 - (Pvyvx)l 2 + p~-pl + (PVX2)2 1-(PVX2)12Y
s

and

5X =

n

-$-[ 1P2-P1+ (PVX2)2 - (PVX2)1 s
tiB L -1

and the percentage

x 100

(U)

x 100

+ (NX2)2- (,v&)J2+ ~NyVx)2-(pVyVx)1]2

error in circulatim

(12)
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$B
V, ds - (V~,y-V2,y)S

fTr Tr la
x 100

‘Vi,y - ‘2,y’”

EVALUATION OF TBRl?WTYR3S OF COMPRESS1813Z-FLOW

(13)

APPROXIMATION USING ERROR EXPRESSIONS

Three different methods were used fw”approxiiiatingthe compres-
sible flow through a cascade of typical compressorblades to serve as
an illustration of practical application of the error expressions (10)
to (13) and their relative accuracy was estimated by the use of these
four error expressions.

Incompressibleflow as approximation t~ compressible flow. - For
many applications, incompressible-flowsolutions have proved to be
satisfactoryapproximationsto the desired compressible-flow solutions.
Because of this observation and because of the relative simplicity of
incompressibleflow, until recently practically all the extensive
literature on computed flow through cascade%-has beenulevoted to incom-
pressible flow (most of the literature prior to 1949 is summarized in
reference 4). The first approximationmethd investigated is therefore
an incompressiblea~roximation. In this approximation, the dimension-
less compressiblevelocity Vc/~ is assumed to be equal everywhere to

the velocity Vi for some known incompressible-flowsolution. Inas-

much as the velocity for any into’qressibleflow may be altered by a
scale factor, a family of compressible-Ylowapproximation~ can be
obtained from any known incompressible solution. The accuracy of the
approximation decreases as the scale of the dimensionless compressible
velocity Vc/~, and hence the Mach number M, is increased.

In order that the eitiple illustratingthe applicatiofiof the
error expressions might be of practical interest, the cascade and the
scale of the velocities were chosen to be representative of axial-flow
compressors. The.incompressibleflow was obtained by a numerical solu-
tion using the theoretically exact inverse method of reference 5 wherein
the blade shape is computed from the prescribed velocity distribution.
The velocity distribution chosen md the resulting cascade geometry for
this example are shown in figures 2 and 3, respectively, In this
exsmple, as well as in those following in this report, the total blade
arc length was taken as 2YC. The maximum d&ensionless compressible
velocity on the blade obtained by this approximation is 0.7558, which
corresponds to a Mach nuniberof 0.8031.
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. In order to obtain measues of the accuracy of
to the usual compressible flow of a polytropic gas,

this approxhation
the error expres-

sions (10) to (13) were computed using the relations for the adiabatic
flow

1

.-2\3

7

.

:=(-3 (14)

and

.
(15)

These relations maybe readily obtatied from the general Bernoulli equa-
-, tion (9) using the adiabatic relation for a poly-tropicgas

(16)

Because the blade-profile velocities of the ticcmpressible flow on
which this approximation was based were computed at equally spaced
points on the unit circle into which the blade profile is transformed,
the integrels slso were expressed in terms of
that Simpsonfs rule might readilybe applied.

the unit circle in order
Thus —

P p2Yc

tJyix=Jo m)%

p211

J!‘*’JO ‘(e)‘de
$Vsds=rvs(’)$a1

(17)
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Although the incompressible solution on which this approxhation to
compressibleflow was based was obtained by a theoretically exact metho~
there still remain numerical inaccuracies due to rounded-off values,
approximationmethods for numerical integration, etc. Itiwas therefore
desirable to have some measure of the accuracy of the incompressible
solution itself. The accuracy of the incompressible solution was meas-
ured by the same expressions (10) to (13) as for the compressible
approximationbut with constant density and with the pressures obtained
from Bernoulli~s equation for incompressible

P ‘pT-$

flow

The numericsl values of the error expressions obtained for
incompressible solution and the incompressibleapproximation to
pressible flow with T = 1.4 are shown in the following table:

Method Error
(percent-)

%! 6Y 6X br

Incompressibleflow 0.00 -0.09 - 0.06 -0.07
Incompressibleapproxi-
mation to compressible
flow 6.72 2:05 -14.14 -0.07

(18)

the
a com-

.. .—

— —.

—

A comparison of the relative errors in this table indicates that the
numerical inaccuracies in obtaining the incompressible solution are
quite insignificant compared with the inaccuracies involved in this
approximation to compressible flow. The large percentage error in the
x-component of force indicates that the incompressibleflow is a poor
approximationto compressibleflow through the cascade at this Mach
number.

FYandtl-Glauertapproxhation. - The incmnpressible solution was
next used to obtain a compressible-flowsolution based on the l?randtl-
Glauert approximation as applied to cascades by Woolard (reference 2).
This approximation is based on the linearized equation for the
perturbation-velocitypotential.and uses only linew terms in the
perturbation-velocitycomponents. Woolard considers the vector mean of
the upstream and downstream inccmrpressiblevelocities Vm,i as the

reference velocity and deviation from this velocity as the perturbation
velocity. If the transformation

.
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Vm,i =Vm, c =Vm
(19)

is used where ~= ~~ sad X is the coorcthmte parallel to,

and Y, the coordhate normal to the vector mean velocity, a linear

N approximation to a compressible flow through a cascade is obtained from

P an incompressible flow through a related cascade. The compressible cas-
cade has the same chord and spacing in the X-direction Sx as the

incompressible cascade, but the spacing in the Y-direction Sy is _

increasedby the factor l/Q. The ratio of the compressible to the
incompressible values of blade thickness, csmber, and air turning angle
will be equal (within the 13near approximation) to ~/k. It is shown
in appendix B that the four integral expressions (1) to (4) are satis-

* fied within the linesr terms in the perturbation-velocity components for
the preceding interpretation of the Erandtl-Glauert rule.

. For the linear approximation to be reasonably accurate, however, it
is necessary that the angle of attack, turning angle, blade camber,
blade thiclmess, blade surface slope, etc. be sufficiently small that
the compressible and incompressibleperturbation velocities be very
small compared with the mean velocity Vm. In most practical cases
these conditicms will not be strictly satisfied everywhere ad, there-
fore, expressions (10) to (13) serve as convenient measures of resulting
mesn errors in any particular exsmple. As an illustration of this use,
the preceding interpretation of the FYandtl-Glauert rule for the case
of k=~ was applied’to the incompressible-flow solution discussed
previously, and the error e~ressions were determined for this approxi-
mation to compressible flow. In this case (k =~), the blade section
and the turning s.nglewe the same (within the linear approximation) as
for the incompressibleflow snd for the incompressible approximation,
but the blade spacing Sy is increasedby the factor lp. Because of
this change in Sy, the flow angles with respect to the normal to the
cascade axis sre slso changed. The relation between the mean flow
angles is givenby

The mean Mach nuniberwas taken the ssme as for the inccmrpressible
approdmation to compressible flow in order that the error expressions.
might be used to measure the relative accuracy of the two approximations
under comparable conditions. The cascade geometry for the compressible

. flow is shown in figure 4. The blade spacing and orientation for the
incompressible cascade are also shown for comparison.
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Inasmuch as the Frandtl-Glauert theory is based on the assumption
that the perturbation velocity is sufficienti.ysmall that powers higher
thsn the first in the perturbation-velocity components may be neglected
throughout, the use of other thsn linearized expressions in these com-
ponents in computing the resultant velocity might seem unjustifiable.
For most practical cases, however, quite different results are obtained
if the linearized expression

v =Vm+U (20)

is used rather than the exact expression

(21)

The compressible velocity distributionhas been computed for the cascade
example of figure 4 by both equation (20) and equation (21) using the
FYandtl-Glauert rule for obtaining the compressibleperturbation-
velocity components (with k =~).

Uc = u@ Vc = Vi

The resulting velocity distributions are shown in figure 5. The appre-
ciable differences over a large part of the upper surface are a result
of the departures of the directicm of thd tangent to the upper smface
from a direction parallel to the mesa velocity. (See fig. 4.) Both
velocity distributionshave been faired over a swill region near the
nose and the tail of the blade to give a single stagnation point in
these regions, but this fairing was over such a small region as to be
hardly detectable on the scale of figure 5. Because of the appreciable
difference between the two velocity distributions, a corresponding dif-
ference in the value of the error e~ressions might be expected. The
values of the error expressions using equations (14) and (15) with
T = 1.4 and based both on the exact equations for the resultant veloc-
ity ad the velocity components and on.the corresponding equations
involving only the linear terms in the perturbation-velocity components
sre given in the following table:

.

*

Method I Error
(percent) .

Linearized velocity relation -0.SL -15,34 -12.23 -18.91
.

Exact velocity relation 0.02 - 6.63 - 3.72 - 4.45
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The Prandtl-Glauertrule, with the use of the linewized relation
* for the velocity, gives e~or expressions, of which the maximum for this

exemple is of about the ssme order of ma@tude as for the incompressible
approximation to compressible flow. Thus, apparently little is to be
gained in the accuracy”of the velocity distribution by the use of the
I@andtl-Glauert rule in this form when appliedto typical compressor
bladhg of moderate csmber. The results shuldbe even less accurate
for typicsl turbine blading in which the csmber is generslly much lsYger.

NJ The reason for this poor performance is clarified by,the comparison
D of the incompressible velocity distributionbased on the ssme linearized

approximation with the origtnal incompressiblevelocity distribution in
figue 6. The difference is of the same order of magnitude as that
between the two interpretations of the XYandtl-Glauert rule shown in
figure 5. The values of the error expressions for the linearized
approximation to the incompressible flow, as compared with those for the
theoretically exact incompressible flow (which represent computaticmal ‘

. inaccuracies) are as follows:

I .-.

Method Error
(percent)

%! ‘Y % br

Linesxized velocity relaticm 0.26 -9.77 -11.92 -17.90
.

Exact velocity relation 0.00 -0.09 - 0.06 - 0.07
I I I I

The preceding table together with figures 5 and 6 indicates that the
errors due to linearization are quite large. In fact, these errors are
of the ssme order of magnitude as the compressibility correction for
this cascade exwnple as is seenby comparing the line=ization error
shown in figure 6 with the compressibility correction shown in figuxe 7.

.-

The considerablybetter results obtained from the Prendtl-Glauert rule
when using the exact relations than when using the linearized relations
is thus a result of elimination of the direct error due to linearization
for the incompressible flow. There remains, however, the error due to
linearization in computing the compressibility correctia. Whenever the

—,

direct errors due to linearization are as large as or larger than the
compressibilitycorrection, more accurate results may be expected if
exact relations for computing the resultant velocities ~d velocity can-
ponents from the perturbation velocities are used.

.
Approximation based on linear pressure-volume relation. - As a

third type of approximation method to be investigated, the inverse
method of reference 3 based on the use of a linear relation between
pressure and specific volume was used. In this method, a proportionality

. constant is determined between the dimensionless compressible velocities
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(ratios of fluid velocity to stagnationvelocity of sound) for the
approximated compressible flow of a polytropic gas and a theoretically .

exact compressible flow of an ideal fluid with a linesr relation between
pressure snd specific volume. The proportionality constant is deter-
mined in such a way that the continuity equation is satisfied for the
approximated flow, that is, ~ = O. Because the flow with the linear

pressure-volume relation is iz!rotational,the approximated flow will
alsobe irrotational.and thus satisfy the circulation condition (4),
that is, r)r= o, within the numerical accuracy of the solution. The

momentum conditions (2) and (3) will not, however, be exactly satisfied
and the values o~~ and 5X will therefore serve as a measure of the

accuracy of the approximation.

In order that this approximationmethod might reasbnablybe com-
pwed with the previously considered methods, it was desirable to obtain
a cascade geometry end flow conditions $imilar to the other approxima-
tions. Because this approximation as well.as the incompressible-flow
approximationwas obtained from inverse design methods, it was impossible
to obtain exactly the same blade geometry. Furthermore, the incompres-
sible approximation and the Flrandtl-Glauertapproximation are for some-
what different configurationsbecause of the different values of Sy.

The Mach number based Orithe vector mesn of the upstream and downstream
velocities was chosen the ssme for all the different approximations, end
the velocity distribution for the present ap~oximation (fig. 8) was
chosen to be very nearly the ssme as for the exsmple of the Prandtl-
Glauert approximation in which the exact velocity relaticm (fig. 5) was
used, but blade shape, blade spacing, and flow sngles sre samewhat dif-
ferent (figs. 4 and9), However, the differences between the different
approximation examples are small enough to make relative vslues of the
error expression significantin comparing the relative accuracy of the
different approximationmethods.

As in the case of the incompressible-flowsolution, it is desirable
to have some measure of the numerical inaccuracies of a particular solu-
tion independent of the errors in .approxhatin &thedesired flow of the
usual polytropic gas (T = 1.4). The numeripal inaccuracies in obtain-
ing the flow with a linear pressure-volume relation (y = -1) can
readily be obtained from the general error expressions (10) to (13) by
using the proper equations for dimensionlesspressure and density for a
gas with linesr pressure-volume relaticm

P=A-m

“*
(22)

(23)

.

.
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where A is an srbitrary constant and q is the dimensionless velocity
+

(ratio of velocity to stagnation velocity of sound) for this gas. The
constant A does not affect the values of any of the error expressions
for closed blade profiles sndwas therefore taken as zero.

Is’
m
P

For the present cascade example, the error ~ressions have been
calculated both for the linearized pressure-volume flow (y = -1) by
using equations (22) and (23) and for a polytropic gas with y = 1.4 by
using equations (14) and (15); the results sre shown in the following
table:

Method I Error

I (percent)

%pyp+r

Linearized pressure-volume flow 0.00 0.47 0.46 0.00
d Approximated flow for y = 1.4 0.00 -0.33 -0.99 0.00

.—

I I I I

. Because this method is theoreticallyexact for the linearized pressure-
volume flow, the error eqyressions for this case are measures of the
numerical inaccuracies due to rounded-off values, integration approxi-
mations, etc. The error expressions for the other case (y = 1.4) we
a measure of the combined error due to numerical inaccuracies and the
inherent error resulting frcm assuming the velocity Vc for this flow ‘

to be proportional to the velocity for the l.inearizedpressure-volume
flow (r= -l). The errors for the approximated flow are apparently
only slightly greater than the numerical tiaccuracies in the cslcul.ation.
The error expressions have also been cahulatedfor all the examples
given in reference 3 and for all cases were below 1 percent. Thusj
apparently this method is qtite accurate for a wide variety of examples
end is not limited to flow with small perturbations from the mean veloc-
ity, as is the case with the Frandtl-Glauert approximation.

.—

For convenient comparison, the error e~ressions for the exsmples
of the different approximationsto flow with y = 1.4 previously pre-
sented are sumnsrized as follmks:

I
Methd

*
lhcompressible approximation
Frandtl-Glauertj linear

. velocity relation
Frandtl-Glauert, exact
velocity relation

Approximation based on linear
pressure-volume relation

Error
(percent)

k %l~l~r

6.72

-0.11

0.02

0.00

2.05 -14.14

-15.34 -12.23

- 6.63 - 3.72

- 0.33 - 0.99

- 0.07

-18.91

- 4.45

0.00
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.

It should be emphasized that the error expressions measure how
closely certain necessary conditions, representative of particularly
significant features of the flow, are satisfied; but even if they are all
zero, the solution may still be inaccurate. An infinite nunmer of con-
ditions are reqyired for a solution to be exact; namely, that it agree
with au exact solution everywhere. Inasmuch as the error expressions
are based on integrals, they are essentia3Jy particular methods of
averaging the errors of a solution. In certain pathological cases, the
errors may csncel each other in the integration, giving a null value for
the error expressions. If they are used with discretion, huwever, the
error expressions furnish valuable checks on’the accuracy of compressible-
flow solutions.

Although the expressions maybe used in checking any type of
approximate solution, they are particularly valuable in checking solu-
tions which give the velocity or pressure distribution on the blade sur-
face directly, as there are often no other convenient checks available
in this case. For relaxation solutions or other solutions which give
the flow throughout the-field, the residual of the difference equation
app~oximatingthe differential eqyation furnishes other indications of
the error, but does not indicate the error involved in approximating the
differential equation. The error expressions thus furnish valuable
supplementary checks in these cases.

For convenience of discussion, it-has previously been assumed that
the approximate flow solution is given in the form of the dimensionless
velocity distribution,but this is unnecessary. The solution maybe
specified in any one of a variety of ways, such ,asthe upstream and
downstreamMach mmibers and apresfiure-coefficientdistribution eround
the blade. The error expressions would thenbe calculated using the
relatians for density, pressure, and velocity in terms of the specified
variables which are exact for the fluid which it is desired to approxi-
mate.

Lewis Flight PropulsicxILaboratory,
National Advisory Committee for Aeronautics,

Cleveland, Ohio, June 28, 1951.

.
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The fol.lowingsynibols

arbitrary constant

velocity of sound

A2PENDIX A

SYMBOLS

are used in this report:

integration path slong blade contour

integration path enclosing only fluid

arbitrary constant

Mach number

pressure

ratio of velocity to stagnation velocity of sound for gas with
linear pressure-volume relation

cascade spacing

arc length

perturbation-velocity component parallel to mean velocity

velocity

perturbation-velocity component normal to mean velocity

rectangular coordinates,parallel and normal, respectively, to
nean velocity

range of integration of Y on blade

rectangular coordinates normal and parallel, respectively, to
cascade axis

ratio of specific heats

error in mass flow, percent (eqwtion (10))

error in x-component of blade force, percent of resultant force
(equation (12))

15
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error in y-camponent of blade force, percent of resultant force
(equation (n))

*

error in circulation,percent (equatic$n(13))

circle angle

angle between velocity vector and normal to cascade

density

solidity

perturbation-velocity potential

co~t~t) m

Subscripts:

1

2

B

c

i

In

msx

s

T

x

x

Y

Y

far upstream of cascade

far downstream of cascade

along blade contour

ccmrpressible

incompressible

values with reference to vector mesn of upstream snd downstream
velocity

maximum value

component in s-direction

total or stagnation conditions

camponent in X-direction

component in x-direction

component in Y-direction

component in y-directicm

.

.

—
.-

—.

.

.
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APPENDIX B

PROCfFTHAT EQUATIONS (1) TO (4) ARE SA3!ISFIEDWITBIN

LINEAR APPRCIXlliATIONFOR PRANDTL—GLAUERT R’UIJ3

It will be shown that ecjpations(1) to (4), which sre evaluated
along contour C of figure 1, are satisfied for the l?rand.tl-Glauert
approximaticm within linear tezms of the perturbation-velocity com-
ponents; that is, they are satisfied.to the approximation that higher-
order terms in the compressible and incompressible perturbaticm-velocity
components may be neglected in comparison with the ltiear terms h com-
puting pressures, densities, and velocities for the compressible and
incompressible flows. Eqmtions which are accurate only within linear
terms in the perturbation velocity will be indicatedby the sign m.

In establishing that these equations are satisfied within this
linear approximation, the equations are for convenience expressed in
terms of the coordinates X,Y psmillel end normal, respectively, to the
mean velocity rather than in terms of the coorhates x,y normal and
parallel, respectively, to the cascade axis. The expressions in the new
coordinates
in the ssme
expressions

fiy rea~ybe obtained from the genersl.-equations(1) to (4)
manner as equations (5) to (8) were obtained. The resulting
are

[ ][ .1- (Pvx)z’- (PQ~sy - (Pvy)2 - (Pvy)lsx=o (Bl) ‘-

$pdx- 1.(P2-P1)q-[(Pvxvy)2 - (PVXVY)l E$

B

[ 1-(Pvy2)2- (Pvy31sx=o (B2)

-$ [ 1
pdy - (P2-P~)sy - (PVx2)2 - (PVx2)1~

B

.-

—

[ 1 (B3)- (PVYVX)2 - (Pvyvx)ly=o -
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$v~ ds + (vy,z-vy,l)~ - (vx,2-vx,l)~ = O

B

In order to check whether these equations are satisfied within the
linear terms in the perturbation-velocity components U,V defined as

.

*
(B4)

U=vx-vm

and

v = Vy

the equation will nowbe ~ressed in
components in which only ltiear terms
Vm, Pmj Pmj ~j s} ~d chord me

The perturbation-velocitycomponents
sible and incompressible flow are assumed to be of the first order.
Camber, thiclmess, range ‘of Y on ablade, and turning angle must then
be of the first order because of the relation along any streamline

terms of these pertubation-velocity
willbe considered. The values of
taken as standard or zeroth order.

u and v for both the compres-

The linearized expressions are obtained as follows:

JiL=
Pm

‘[l-=HI!
P~vm2 u

Sill- rlf+l---~
m

> (B5)

.

.



.

.
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Hence

p-pm s -Pmvm2 ~

similarly

1

19

.(B6)

[ 1
~

(Y-1)%2* PmT112u
#-sl - = l-%2&l--— KPm ~~

(B7)
m

Therefore

‘V’%pmvmt-~2N+%vmF+“-%2)d

‘v’’hv+-%2H~’pmvm~

(B8)

(B9)

2F-~2NFJ’pJm2E+‘2-%2)d ‘BIO)PV’2 = Pm’m

(Bll)

o ~B12)
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where ~B indicates

both MB and %

NACA TN 2501

range of integration of Y on the blade. Since
are of the first order, the integral is equal.to

●

zero to the first order. This merely means that the blade force is
normal to the mean velocity within the linesr approximation, a condition
which is exactly satisfied for incompressible flow. If these vslues are
substituted in equations (Bl) to (B4), the linearized form of each of’
these equations for compressible flow results.

%.m2[-fc(*)c=B)c+(*)c%,..- ---——
(B14) .

bvmz[-(l%,)~+)c%,c-~~)c%(~,,) -__’

Vm

Because equations (B13) and (B15) are identical and equations (B14) and
(B16) are identical, except for factors involving ~ and Vm, which

are of staz&rd order, the four independent–conditionsfor the general
case (equations (Bl) to (B4)) are reduced to two independent conditions
for the linear approximation.

In proving that these conditions are satisfied for solutions
obtained by the fiandtl-Glauertrule, they are expressed as equivalent
conditions on the incompressibleflow by the FYandtl-Glauert transforma-
tion and it is then proved that
within the linear approximation
sible flow.

these resulting conditions are satisfied
for the exact solution of the incompres-

.



NACATN 2501 21
.

From the basic Prandtl-Glauert relations (eqpation (19)), the fol-.
lowing additional relations between the corresponding compressible snd.
incompressible flows are obtained (reference 2):

N
mP

.

●

✎

The
and

%I,c=%,i

i-l
‘c ‘~vi

(B17)

(B18)

substitution of these values in the two independent equations (B13)
(B14) gives the conditions on the compressible flow e~ressed in

te~ of the corresponding incompressible flow as follows:-

1-

1( )U2-U1
p&: -

‘m i

The incompressible
based must satisfy

L

u~i‘B,i -

flow on which

(B19)

--

()]‘%,i- ~i%, i ‘0

r+)i~~+r%-)i~j “0

(B20)

the Prandtl-Glauert approximation is
the conditions (Bl) to (B4) tith p constant and. p

given by equation (18). As in the case of the compressible flow, the
linear approximation to these conditions gives only two independent con-
ditions, which maybe most easily obtainedby considering these condi-
tions as the limiting case of a compressible flow as the Mach number
approaches zero in equations (B13) and (B14). Thus

‘mvm[-&)i~,i-~*))%,il‘0 (B21)
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Equation (B19),differs from equation (B21) by the factor o/k and
equation (B20) differs from equation (B22) by the factor l/k. Thus,

●

if ~/k and l/k sre not large, the conditicms on the compressible-
flow equations (B19) and (B20) obtained from the Prandtl-Glauert rule
are satisfied to the ssme order as the linearized con’titionson the cor-
responding incompressibleflow. AccorMng to eqpations (B18), this con-
dition is equivalent to the condition that the compressible

—

perturbation-velocitycomponents Uc and Vc are of the same order of

magnitude as the corresponding components for the incompressible flow. @
N

For the linearized form of the necessary conditions on the incom- W

pressibl. flow to be satisfied within a given accuracy, the incompres-
sible perturbation-velocitycomponentsmust be sufficiently small cmn-

—

pared with Vm and, consequently,blade-surface slope, blade csmher,

blade thickness, angle of attack, turning angle, etc. of the incompress-
ible cascade mst be sufficiently small. In order to guarantee that
the corresponding compressible flow satisfy the necessary condition with .
simils.raccuracy, the compressibleperturbation velocities Uc and Vc

must also be sufficiently small. If, in a given incompressible cascade,
the values of ui and vi are e~al. to the maxti allowable values t

for the reqtired accuracy and it is required that vslues of Uc and Vc

for the corresponding compressible cascade not exceed these values, it
is necessary that k~l. Inasmuch-as the ratio of the compressible.to

.-

the incompressiblevslues of blade csniber,blade thickness, angle of
attack, turning angle, etc. are equal to ~/k, the ratio of these quan- _

tities must not be greater than ~~ ~d, consequently,blade thick- —

ness, turning @e, etc. for the compressible flow must be extremely
small if ~ is near 1 in order for the R$audtl-Glauert approximation

to be reasonably accurate.
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Figure 3. - Cascade geometry for incompressible flow and incompressible approximation.
Mesn Mach number, 0.5050; incompressible and compressible solidity, 0.9571.
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Mean Mach number, 0.5050; compressible solidity, 0.0655; velocity V = -.
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Figure 9. - Cascade geometry for approximation with dimensionless velocity
proportional to that of linearized-pressure-volume flow. Mean hiachnumikr, 0.5050;
soLidity, 0.9856.
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